Monday, January 26, 2009

Parallel Extensions of .NET 4.0

Last night, I was playing around with some cool new features of .net framework 4.0, which a CTP released as a VPC, can be downloaded from here.

There are many new stuffs Microsoft planned to release with Visual Studio 10. Parallel Extension is one of them. Parallel extension is a set of APIs that is embedded under the System namespace and inside mscorlib assembly. Therefore, programmers do not need to use a reference from any other assembly to get benefit of this cool feature. Rather they will get this out of the box.

Well, what is Parallel Extensions all about?

Microsoft's vision is, for multithreaded application, developers need to focus on many issues, regarding managing the threads, scalability and so on. Parallel extensions are an attempt to allow developers to focus onto the core business functionality, rather the thread management stuffs. It provides some cool way to manage concurrent applications. Parallel extensions mainly comprises into three major areas, the first one is the Task Parallel library. There is a class Task which the developer should worry about. They will not bother about the threads; rather they will consider that they are writing tasks. And the framework will execute those tasks in a parallel mode. The next major area is called PLIQ, which is basically a LINQ to Objects that operates in parallel mode. And the third one is Coordination data structure.

Let's have some code snippet to get a brief idea about this.

We will use a simple console application, and see the solution explorer we are not using any assemblies as opposed to the defaults.


So parallel extensions do not require any special libraries!



The above code does, takes an input integer and doubles that, and finally finds the prime numbers from zero to that extent. Well, this is nothing quite useful, but enough to demonstrate an application. This method also writes the executed thread ID into the console window.

Now, let's first create few threads to execute our above written method. We will create 10 threads to execute the methods simultaneously.



Here things to notice that, in this way, we have the thread instance under our control, so we can invoke methods like, Join(), Abort() etc. but, developer is responsible to manage threads by their own. The code produces following outputs.



See, we have actually 10 different threads generated to execute this. Now, let's use the Thread Pool thread for the same business.


This generates the output like following.




Look, it is using the same thread (6) for all the work items. The .net thread pool using thread objects effectively. But in this way, we lost the control that we had into the previous snippet. Like, now we can't cancel a certain thread directly, because we actually don't know which thread is going to execute the work items.

Now, let's have a view into the cool parallel extensions Task class. It's pretty much like the Thread implementations, and allows all the methods like, Wait(), CancelAndWait() etc to interact with the task. In addition, it will take advantage of the execution environment. That means, if you run this application into a Multi core processor, it will spawn more threads to carry out the tasks. Though, as I am using this into the VPC with a single core CPU, it's using one thread instance to carry out the tasks. But now this is not my headache, to manage threads, or even thinking about it. All these concerns are taken care of by the Parallel Framework. Cool!




This generates the same output like Thread Pool snippet, but that is only because I have used it into a VPC. On a multicore machine, it will generate more threads to get the optimal performance.

Parallel Static class


Well, this is even more interesting. It offers few iterative methods that automatically executes each iterations as a task and of course in parallel. Isn't it a cool one?




I hope. I will explain PLINQ in my next post. Happy programming!



Saturday, January 17, 2009

Extension Methods

.NET 3.o provides the feature named “Extension methods”, which is used drastically by the LINQ library. For example, the Enumerable class of System.Linq namespace declares a whole bunch of static extension methods that allows user to write Linq enabled smart looking methods on any IEnumerable<TSource> instance.
For instance
,



Generates output like following

Here, we are using the Where method which is basically an extension method for any IEnumerable instance. The extension methods along with the Lambda expression (which is another new feature of .NET 3.0), allows us to write very verbose filter code like snippet showed above.

So, what is the Extension method?



According to the MSDN,
Extension methods enable you to "add" methods to existing types without creating a new derived type, recompiling, or otherwise modifying the original type. Extension methods are a special kind of static method, but they are called as if they were instance methods on the extended type. For client code written in C# and Visual Basic, there is no apparent difference between calling an extension method and the methods that are actually defined in a type.


I personally like this feature very much. Along with the LINQ related usage Extension methods can be very handy in some other cases.
Consider a scenario, where I have an interface that has a method with three arguments.




Now at some point, I found that it would be better to provide an overload of this method where the last argument will not present, the implementation of the interface will pass true as the default value of indent.

Now, if I do so, each of the implementers of this interface need to implement the handy overloaded version and need provide the default value true. But this seems a burden that we could take away from the implementers. Also, there are chances that somebody will implement this second method and pass false mistakenly as a default.
We can resolve this issue very neat way using extension method. Consider the following snippet.


See, the interface only contains one version of the method, implementers are also not bothered at all about the overloading version and the default value jargons. But the consumer of the interface still consuming this as this is a part of the interface, only they need to import the namespace where the extension method declared. Even the Visual Studio is also providing the result intellisense support like a regular overloaded scenario. Isn’t it nice?


Internally, what is happening? Well, this is basically a syntactical sugar, not more than that. The compiler actually generates the regular static method calls for the extension methods. Therefore, compiler actually interprets that syntax as following


So this is a compile time stuffs, during runtime, it’s nothing different from a regular static method invocation.
Like C# Visual basic also supports extension methods. But there is an exception though. Don’t use the extension method invocation syntax for any extension method that written for System.Object class . Because VB consider the System.Object class differently, and it will not generate this actual static method invocation syntax during compile time. And what will happen actually is, during runtime it will raise an exception. So be aware about it.
This feature is really a great one among the other features of .NET 3.0, we can now write some common boiler-plate codes as an extension method in an enterprise solutions. For instance, methods like, ArgumentHelper.ThrowExceptionIfNull(), String.IsNullOrEmpty() can be written with extension methods and can be used in a very handy way.


Big power has big responsibilities.

As this offer you a lot of power to write methods for any type, you need to remain aware that you are not writing unnecessary extension methods which can make other confused. Such as writing a lot of extension methods for System.Object is definitely not a good idea.


I’m expecting something called “Extension properties” which could be another good thing. I think, it should not be a difficult one, cause internally .NET properties are basically nothing but methods. Hope Microsoft will ship “Extension properties” in future version of .NET framework.


Happy programming!